164 research outputs found

    The one-loop renormalization of the gauge sector in the noncommutative standard model

    Get PDF
    In this paper we construct a version of the standard model gauge sector on noncommutative space-time which is one-loop renormalizable to first order in the expansion in the noncommutativity parameter θ\theta. The one-loop renormalizability is obtained by the Seiberg-Witten redefinition of the noncommutative gauge potential for the model containing the usual six representations of matter fields of the first generation.Comment: 16 pages, 2 figure

    The Energy-momentum of a Poisson structure

    Full text link
    Consider the quasi-commutative approximation to a noncommutative geometry. It is shown that there is a natural map from the resulting Poisson structure to the Riemann curvature of a metric. This map is applied to the study of high-frequency gravitational radiation. In classical gravity in the WKB approximation there are two results of interest, a dispersion relation and a conservation law. Both of these results can be extended to the noncommutative case, with the difference that they result from a cocycle condition on the high-frequency contribution to the Poisson structure, not from the field equations.Comment: 22 page

    Lagrangian form of Schr\"odinger equation

    Full text link
    Lagrangian formulation of quantum mechanical Schr\"odinger equation is developed in general and illustrated in the eigenbasis of the Hamiltonian and in the coordinate representation. The Lagrangian formulation of physically plausible quantum system results in a well defined second order equation on a real vector space. The Klein-Gordon equation for a real field is shown to be the Lagrangian form of the corresponding Schr\"odinger equation.Comment: To appear in Foundation of Physic

    Scattering in Noncommutative Quantum Mechanics

    Full text link
    We derive the correction due to noncommutativity of space on Born approximation, then the correction for the case of Yukawa potential is explicitly calculated. The correction depends on the angle of scattering. Using partial wave method it is shown that the conservation of the number of particles in elastic scattering is also valid in noncommutative spaces which means that the unitarity relation is held in noncommutative spaces. We also show that the noncommutativity of space has no effect on the optical theorem. Finally we study Gaussian function potential in noncommutative spaces which generates delta function potential as θ0\theta \to 0.Comment: 7 Pages, no figure, accepted for publication in Modern Physics Letters
    corecore